Grade 11/12 Math Circles March 12023
 Dynamical Systems and Fractals - Problem Set

1. Consider the function $f(x)=x^{2}$. Sketch this function and plot the first few points of its orbit $\left\{x_{0}, x_{1}, x_{2}, x_{3}, \ldots\right\}$, i.e. plot the points $\left(x_{0}, x_{1}=f\left(x_{0}\right)\right),\left(x_{1}, x_{2}=f\left(x_{1}\right)\right)$, etc..., for the starting values $x_{0}=0,1 / 2$, and 2. Describe what is happening to the orbit of $f(x)$ for each of these starting values.
2. Let $f(x)=x^{2}+3 x+1$. Find all of the fixed points of $f(x)$.
3. Consider the family of functions defined by $f_{c}(x)=c x$ where c is a constant and $c \neq 0$. Determine all of the fixed points of $f_{c}(x)$.

Hint: You may end up with different fixed points depending on the value of c.
4. (a) Consider the function $f(x)=x^{2}-\frac{1}{2}$. Sketch $f(x)$ and $y=x$ on the same set of axes and show graphically that $f(x)$ has two fixed points. Label these fixed points on your sketch as \bar{x}_{1} and \bar{x}_{2} such that $\bar{x}_{1}<\bar{x}_{2}$.
(b) Use a graphical method (i.e. cobweb diagram) to help determine the behaviour of various orbits starting near both \bar{x}_{1} and \bar{x}_{2}. Use your diagram to make an educated guess as to the nature (attractive, repelling, or neither) of each fixed point.
(c) Now consider the family of functions $f_{c}(x)=x^{2}+c$ where c is a constant. For what values of c do fixed points of $f_{c}(x)$ exist? Some sketches of the graphs of $f_{c}(x)$ for various values of c may help, but they are not necessary.
5. Let $f(x)=-x^{3}$. Find all fixed points and periodic points of period two of $f(x)$.
6. CHALLENGE Let $f(x)=1-x^{2}$. Find all fixed points and periodic points of period two of $f(x)$.
7. CHALLENGE Consider the function $f(x)=x+\cos (x)$. Show that $f(x)$ has an infinite number of fixed points.

